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A theory is developed for analysing the inviscid interpenetration of two streams. 
It is assumed that the difference in total pressure between the streams is not 
large. Several examples of the general results are presented. 

1. Introduction 
The fluid mechanics of the interpenetration of moving streams are by no means 

fully understood. Some insight into this phenomenon can be gained by con- 
sidering two-dimensional inviscid incompressible flows since such flows are 
frequently simple enough to be amenable to mathematical analysis. But rela- 
tively few analyses of this type have actually been performed. This is due, at  
least partially, to the fact that they often involve the solution of nonlinear 
problems in which the shapes of the boundaries are unknown. Fortunately, the 
classical theory of inviscid flows can be used to obtain solutions for the special 
case where the total pressures of the streams are equal. Such flows were discussed 
by Ehrich (1953) and by Woods (1956). 

There is another limiting case, called the ‘strong jet approximation’, in which 
the analysis can be considerably simplified. This is the case where the total 
pressure in the injected stream is very much larger than that in the mainstream.t 
An analysis of this type of jet was first carried out by Taylor (1954), who obtained 
an analytical solution by introducing an additional approximation. This approxi- 
mation was removed by Ackerberg & Pal (1968), who used a variational principle 
to obtain numerical solutions. 

In  this paper we shall analyse the opposite limit, wherein the difference in total 
pressure between the two streams is relatively small. We consider a stream dis- 
charging from a nozzle or reservoir into a partially moving and partially 
stationary environment in such a way that where the two streams first interact 
the flows leave the solid boundaries in a tangential direction (figure l).$ A stagna- 
tion region with an accompanying free streamline may or may not be present. 
The flow will be assumed to be two-dimensional, inviscid and incompressible. 

t A linearized version of the strong jet approximation was used by Spence (1956) to 
analyse the jet flap. 

$. This condition serves to eliminate stagnation points where the streamline slope can 
change discontinuously as the difference in total pressure between the streams becomes 
non-zero. 
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FIGURE 1 .  Interpenetrating streams. 

The velocity will, in general, not be continuous across the streamline or stream- 
lines (denoted by S in figure 1) separating the two streams. 

The problem is solved by expanding in a small parameter which is related to 
the difference in total pressure between the streams.? The zeroth-order solution 
corresponds to equal total pressures and can be obtained by classical methods 
such as the Helmholtz-Kirchhoff technique. Since the boundary shapes for the 
first-order (different total pressures) problem are unknown, a technique similar 
to that employed in thin-airfoil theory is used to transfer the first-order boundary 
conditions to the zeroth-order boundary. The transformed problem still involves 
a combination of boundary and jump conditions which cannot be handled by 
ordinary techniques. In  order to overcome this difficulty we develop a procedure 
which transforms the problem into one which can be solved by standard tech- 
niques of the theory of sectionally analytic functions.$ This procedure consists 
of introducing a new dependent variable which satisfies only jump and symmetry 
conditions on the boundaries rather than the combination of jump and boundary 
Conditions which is imposed on the physical variables. 

The general problem is formulated in $ 2  and the asymptotic expansions are 
performed in $ 3. The zeroth- and first-order boundary conditions are deduced in 
3s 4 and 5, respectively. Solutions are then developed for flows both with and ( 3  6) 
and without (3 7 )  free streamlines. In  3 8 the general theory is applied to several 
specific flow configurations. 

Although it is assumed herein that the interacting streams are of equal density, 
the theory can easily be generalized to include streams of unequal (but constant) 
density (Goldstein & Braun i969a). 

2. Formulation and boundary conditions 
It will be .assumed that the flow is inviscid, incompressible and irrota- 

tional. A typical flow configuration is illustrated in figure 1. The analysis is 
limited to the case in which the difference between the total pressure $. in the 

t The discontinuous change in stream slope which would occur if the tangency condition 
were not imposed at the confluence of the streams would cause this expansion to become 
non-uniformly valid at this point and it would then be necessary to use the method of 
matched asymptotic expansions to complete the solution. 

$ A sectionally analytic function is one which is analytic in the entire complex plane 
except on a given curve across which its value changes discontinuously (jumps) (Musk- 
helislivili 1953, § 15). 
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streamt emanating from the nozzle or reservoir and the total pressure Pa in the 
mainstream is not too large; or more specifically, to the case in which 

Ip,-P,I/gpV2, = I € \  < 1, (1) 

where p is the density of the fluid and V, is the velocity of the mainstream a t  
infinity. We let L denote a convenient reference length, which will be specified in 
the course of the analysis. All lengths are made dimensionless using L (i.e. 
x = X / L ,  y = Y/L  and h = H / L )  and the complex variable z is defined by 
z = x + iy. The quantities u and v denote the x and y components of the velocity 
non-dimensionalized by V, and the dimensionless complex-conjugate velocity 5 
is defined, as usual, by < = u - iv. 

The stream of fluid issuing from the nozzle (reservoir) meets the mainstream 
and forms a common streamline which is denoted by S. Points on this streamline 
will be denoted by zs = xs+iyS. In  order to satisfy the requirement that there 
be no discontinuities in the static pressure p ( x ,  y) anywhere within the flow field, 
it  is necessary (as will be shown subsequently) to allow the velocity to be dis- 
continuous across S.  For this reason the streamline S will be called the slip line. 
The region occupied by the injected stream is denoted by D+ and the remaining 
region of the flow (i.e. the mainstream) by D-. Since the velocity is discontinuous 
across S7 it is convenient to use the superscripts to distinguish between these 

[(z) = [*(z), ZED*. regions. Thus, 

Then [+ is holomorphic in the interior of D+ and <- is holomorphic in the interior 
of D-. 

The following argument will show that the velocity must be discontinuous 
across S. Bernoulli’s equation, when applied to the flow within the injected 
stream, shows that 

p(x,y)l&pV2, + )<++(412 = q/gPVci2,, Z E D + ,  (2) 

P ( ~ ~ Y ) / + P V ~ ,  + \C-(z)12 = pm/$pV72,7 ZED-.  13) 

and when applied to the flow external to the jet, that 

But, since S is a common streamline of the external and internal flow, and since 
the static pressure cannot be discontinuous across this line, it follows from (2) 
and (3) that 

at  every point zs of 8. 

velocity by the variable Q, which is related to it by 

lC+(zs)p- I<-(zS)12 = (q-P,)/gpV: = E (4) 

It is convenient in the analysis which follows to replace the complex-conjugate 

[+ = exp a*. 

lexpQ+lz- IexpQ-12 = E for ~ € 8 .  

Then the ‘jump’ condition (4) becomes 

Moreover, since the velocities inside and outside the jet must have a common 
direction at  each point of S ,  it follows that 

ImQ+=Im52- for Z E X .  (7 )  

t Which is assumed for definiteness to be of finite width a t  downstream infinity. 
31-2 
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Since there is no flow in the stagnation region (if such a region is present), it is 
clear that the static pressure along the free streamline P is constant and equal 
to the pressure in this region. Furthermore, very far downstream the velocities 
of the mainstream and injected stream become uniform, and as a consequence 
the pressure in the stagnation region must be equal to the pressure p ,  of the 
mainstream at infinity. Hence, (2) and (5) show that for any point on 3’ 

We can ensure that P will be a streamline by setting the cross-product of the 
velocity and a differential of arc equal to zero to obtain 

Im {exp [!2+(2R)] d x 3  = 0. (9) 

exp [Q+(z)] -+ constant as x 3 a0 in the reservoir or nozzle (10) 

The conditions imposed on the velocity at  infinity are 

and !2-(z) -+ 0 as z+co in the mainstream. (11) 

On solid boundaries the slope of the velocity c* equals the slope m of the wall, 
so that 

(12) 

These conditions are sufficient to determine the solution completely, provided it 
exists.7 

Im Cl*(z) = - tan-lm(x) for z on a solid boundary. 

3. Asymptotic expansions 
We assume that the functions !2* can be expanded in asymptotic power series 

in 6. Then, in view of the fact that the shapes of the slip line and of the free stream- 
line depend on E ,  these expansions imply that the co-ordinates zs and zF of 
S and P, respectively, and the asymptotic width h of the injected stream also 
possess such expansions. Hence 

(13) I Q* = Cl,+sCl: ...) 2s = X f + E Z f +  ...) 
ZF = Z g F + E X ~ +  ..., h = h,+sh,+ ... . 

The reason for omitting the superscripts -t on the zeroth-order terms of the 
expansions for Q* is that the continuity of these terms across S (which we shall 
establish subsequently) ensures that there will be a single function !2, which is 
holomorphic in the entire flow field. 

The reference length L will now be chosen to make h, = 1, which means that 
L is the zeroth-order asymptotic thickness of the injected stream. This is denoted 
symbolically by putting 

The last expansion in (13) is then 
L = H,. (14) 

h = l+eh,+ .... (15) 

t A reviewer has pointed out that the boundary-value problems for certain containing 
flows do not always possess solutions. 
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FIGURE 2. Intermediate (T) plane. 

4. Zeroth-order solution 
When the expansions (13) are substituted into the boundary conditions (6)-( 12) 

and only the zeroth-order terms are retained, the following boundary conditions 
for the zeroth-order solution are obtained. First, boundary conditions ( 6 )  and (7) 
show (as has already been anticipated) that the zeroth-order solution must be 
continuous across the slip line and hence that it is characterized by a function 
which is holomorphic everywhere within the flow field. The remaining conditions 
show that 

(16 a,  b )  

Im Q,(z) = - tan-lm(z) for x on solid boundaries, (16c) 

Co(z) = constant as z+ 00 in the reservoir or nozzle, (16 4 
Q,(z) = 0 as z+oo in the mainstream, (16 e )  

I C O ( Z 3  I = 1, Im (CO(Zi3 W} = 0, 

where we have put & ( x )  = exp [Q,(z)] .  
Now the boundary-value problem posed by the boundary conditions (16), 

whether or not it involves a free streamline, can in principle be solved by classical 
methods such as the Helmholtz-Kirchhoff technique (see, for example, Birkhoff 
& Zarantonello 1957, chap. V). This is often accomplished by mapping the hodo- 
graph plane and the complex potential plane into the upper half of an inter- 
mediate T plane in such a way that the free streamlines and solid boundaries map 
onto the real axis (figure 2). We shall denote the real and imaginary parts of the 
variable T by 5 and 7, respectively. We let $@$ denote the region of the T plane 
into which the zeroth-order injected stream maps and 9; denote the region of 
the 17 plane into which the zeroth-order mainstream maps. The dividing line 
between these two regions (which is called for convenience the zeroth-order slip 
line even though no slip occurs in the zeroth-order solution) is denoted by 9,. 
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FIGURE 3. Comparison of zeroth-order and true boundaries in the physical plane. 

5. Formulation of first-order problem in physical plane 
The mapping T + x introduced in the preceding section transforms the upper 

half T plane approximately into the region of flow in the physical plane. The 
domain Ba,+ is mapped into the cross-hatched region shown in figure 3. The curve 
Yo and the line segment EC are mapped into the dashed boundaries So and Fa, 
respectively. This region, of course, differs from the true interior of the jet, whose 
boundaries S and H are indicated by the solid lines in the figure. 

The boundary conditions (6)-(9) are specified on the curves S and F .  Although 
the shapes of these curves are not known at this stage of the solution, they can 
differ from those of So and Fa (which are known) by quantities which are at most 
of order 8.  Since, as far as the first-order solution is concerned, the boundary con- 
ditions oiily have to be satisfied up to and including terms of order e, we shall 
attempt to transfer the boundary conditions correct to terms of order e from 
S and F to So and Fa, respectively. To this end recall that the solution has been 
divided into two parts (indicated by the superscripts &- ), one of which is holo- 
morphic in D+, the other being holomorphic in D-. We shall assume where neces- 
sary (as is done in thin-airfoil theory) that each of these portions of the solution 
can be analytically continued across X and P to So and Fa, respectively. Thus the 
values of Qk at  a point zs of S can be expressed in terms of their values at the 
neiglibouring point x f  of X, by performing a Taylor series expansion? about zg. 
Of course, similar remarks apply to P. Hence 

Q*(ZS) = Q*(zf) + (dQ*/dx),=,s(zs - 2:) + . . . , 
Q+(z”f) = Q+(z{) + (dQ-Z+/dZ),=,F(ZF - 2,”) + . . . 

Substituting the asymptotic expansions (13) into these series and retaining 
terms O(B)  shows that 

Q ( Z 9  = Q O ( Z f )  + € [ Q ? ( Z f )  + (dQO/dz),=,~z~l  + O ( S 2 ) ,  (17)  

By substituting these expressions into the boundary conditions (6)-( 9) and 
neglecting terms O(G) we can find the boundary conditions which the first-order 

That is, a* can, if necessary be analytically continued to 2:. 
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solutions must satisfy on the known boundaries So and Fo. Thus conditions (6) 
and (7) show that on the slip line 

Re [ Q M ) -  Q,(z31=2ICo(z3-* (19) 

and Im a,'(#) = Im Q;(z f ) ,  (20) 

Re [Qz,f(z,F) + (dQo/dz),,,~z~] = 4 (21) 

while (8) and (9) show that on the free streamline 

and 

where d/dS? denotes differentiation with respect to distance along the zeroth- 
order free streamline. Equations (19)-(22) are the boundary conditions for the 
first-order solutions ' transferred' from the boundaries Sand F to the zeroth-order 
boundaries 8, and Fo, and hence the first-order boundary-value problem has been 
transformed from one in which the shapes of the boundaries are unknown to one 
in which they are known. 

Equations (19) and (20) can be combined to give the following single slip-line 
boundary condition : 

(23) 

The variable X X  can be eliminated between conditions (21) and (22) to yield 
a single boundary condition for a,+ on Fo. To this end we first note that for any 
analytic function G(z)  and any zeroth-order streamline zo on which the length of 
arc is denoted by So 

Clz,f(z,s) - Q2,(Z,s) = 2 ]Co(z$)I-? 

When X, is taken to be the zeroth-order free streamline Yo [characterized by 
(16a)], this shows that 

which is a real quantity. Hence the second term on the left side of (21) becomes 

so that (21) implies that 

Upon using (16 a )  and the relation co(z$) = dz?/dSr we find that (22) can be 
rearranged to obtain 

(28) 
a 

-1m [co(z?) 2 3  +Im Q;b(z,F) = 0. 
dS,F 
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Combining (27) and (28) now shows that 
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which becomes, upon differentiating by parts, 

Im- (+-a,+)- = 0 for z o n s f .  
dz 

Finally, combining condition (12) with (16 c) shows that 

Im Q(z$) = 0 for z on solid boundaries. (31) 

6.  Flows in which a free streamline is present 
6.1. Solution 

First consider the case where there is a free streamline but the solid boundaries 
consist only of straight-line segments. Then the zeroth-order problem can always 
be solved by the Helmholtz-Kirchhoff technique. We shall, for the most part, be 
able to construct the first-order solution without considering the detailed pro- 
perties of the zeroth-order solution. However, in order to express this solution in 
explicit form, it is necessary to  know certain features of the asymptotic behaviour 
of the zeroth-order solution as T -+- co and T 3 (see figure 2). By using the 
methods given in Birkhoff & Zarantonello (1957, chap. IV) we can show that this 
behaviour is completely determined by local conditions and will, therefore, be 
the same for all flows under consideration. Thus, in particular, we can show that 

z N T ,  dz/dQo = o ( z 2 )  as T-tco (32) 

and dz/dQ0 = O(T--T),  x N a+bT as T+T. (33) 

In  order to construct the first-order solution it is convenient &st to transform 
some of the boundary conditions in the physical plane in a certain manner which 
is suggested by the form of the free-streamline condition (30). To this end notice 
that (25) shows that i&-l(z)dQo(z)/dz is real on these boundaries. Hence the 
boundary condition (31) on the solid boundaries may be written as 

where the k$ can be any real constants. 
The boundary condition (23) along the slip line can also be written in terms of 

the variable appearing in (30) and (34), by multiplying by dz/dQo and differ- 
entiating along the zeroth-order slip line to obtain 
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where h'f denotes the distance measured along the slip line. The derivatives on 
the left may be taken with respect to z because the quantity in the braces is 
analytic. This is not true for the quantity on the right side. 

The boundary conditions (30), (34) and (35) (together with the appropriate 
conditions at infinity) are just sufficient to determine the analytic functions SZF. 
Since they are specified on the zeroth-order boundaries, they actually determine 
i2; in the zeroth-order regions of flow. And since these regions are mapped into 
the upper halfT plane by the zeroth-order solutiont it is convenient to transform 
the boundary-value problem into that plane. Then, since co dz /dT  is real on the 
real T axis (into which the free streamlines and solid boundaries are mapped), the 
boundary conditions (30)-(35) show that the function 

which is sectionally analytic in the upper half T plane cut along the zeroth-order 
slip line .Yo, satisfies the boundary conditions 

A+(T) - A-(T) = r ( T )  for T E Y ~ ,  

ImR(E+iO) = 0 for -00 < < +m, (37) 

where we have put$ 

Now suppose that 0 is a sectionally analytic function which satisfies conditions 
(37). Then, if w is any function which is analytic in the interior of the upper half- 
plane and which is real on the real axis, the function 0 + w  also satisfies the 
boundary conditions (37). Pirst, suppose that w has no singularities on the real 
axis. Then the Schwartz reflexion principle shows that w has an analytic continua- 
tion to the entire T plane and therefore has a Taylor series expansion about the 
origin which has real coefficients. Thus w can be represented in the form 

N 

n=O 
2: c, Tn with c, real. 

If N = + 00, w has an essential singularity at T = + 00; if N is finite, w has a pole 
of order N at T = + 00. It will be shown subsequently that the behaviour of 5 a t  
T = 00 dictates that N be finite. On the other hand if w does have singularities 
on the real axis, the requirement that w be real there shows that they cannot be 
branch points. Hence these singularities must be poles or perhaps essential 
singularities. However, an investigation of the solutions shows that, if 5 is to be 
bounded, the only singularity which can be allowed is a simple pole a t  the origin. 

t Then the function z = z(T) ,  which is the inverse of this mapping, is given by the zeroth- 
order solution. 

The notation r(T) is not meant to indicate that I' is an holomorphic (analytic) function 
of T. In fact I' is defined only on 9,. 
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Upon using the fact that? c0dz/dT is real on the real T axis we see that the 
solution to the boundary-value problem (37) can be expressed as 

AT dz  
n=O dT 

R(T) = O(T)+ cnT~+aCo(T')- for ReT > 0, (39) 

where c, and a are real constants and 0 is a sectionally analytic function which 
vanishes at  infinity, is bounded on the real axis and is a solution of the boundary- 
value problem (37). 

We shall first construct the function 0. To this end let the reflexion of the 
curve Yo in the real axis be designated by 9'; (figure 4). The function r(T) ,  
defined on Yo in the upper half-plane, can be extended t o  9; by setting 

- 
r(q = r ( T )  for ~€9';. (40) 

It follows from conditions (32) and (33) that r(T) vanishes like some power 
(perhaps fractional) of T as T -+ 00 and remains finite at  the intersection of Yo 
with the real axis. It can also be shown that this intersection occurs a t  right angles 
to the real axis. Then the Plemelj formulae (Muskhelishvili 1953, p. 42) show 
that the Cauchy integral 

(where the integration is to be performed in the counterclockwise (positive) 
direction along Yo and 9;) is indeed a sectionally analytic function which is real 
(and bounded) on the real axis, satisfies the jump condition in (37) and vanishes 
at infinity. In  fact, they show that 

where P denotes the Cauchy principal value and the convention for the k super- 
script is that used previously. 

t Recall that the function z ( T )  is determined by the zeroth-order solution. 
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The definition (36a) ,  when combined with (39), shows that for T E ~ $  
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or, after integration, that 

But using the estimates (32) and (33) and the fact that O(T) = o(1) as T+OO 
(Gakhov 1966, $4.6)  we find that the constants p and c, (n # 0) must vanish if 
the function Qf(T) is to  be bounded. Hence the first-order solution is given by 

with 0 determined by (38) and (41). 
The constants a and co can easily be determined in any specific problem by 

requiring that Ll,f(T) remain bounded and that no new fluid be added to the 
injected flow (continuity). A similar expression can easily be obtained for a;. 
In order to complete the solution it is necessary to calculate the positions of the 
slip line and the free streamline. 

6.2. Derivation of boulzdary values 
Multiplying (45) by &dz/dT and integrating by parts shows that 

Ti@ + G O  + [ 1, 7 dT] Ko(T) - c00(531+ a[z(T)  C O V )  - 4Ti) C0(931? 
(46) 

where Ti is the image in the T plane of the initial point 2;. Using (46) in equation 
(A 4) (see appendix) with f(do) taken equal to $ -a  shows that the position zd of 
any streamline d is determined byt 

The two bounding streamlines are the slip line and the free streamline. The initial 
point Ti on the slip line is as may be verified by reference to figure 2. Then 
putting Ti = (46) with z(T,) = 0 (as indicated in figure 1)  shows that 

t z(T)  with T €do gives thelocation in the physical plane of the zeroth-order streamline do. 
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The zeroth-order free streamline maps into the real T axis. We can suppose 
without loss of generality that it occupies the region E > 4 €or some constant 
4 > 0. Then 

It follows from (5), (13), (17), (45) and (48) that the velocity of the injected 
flow at the slip line is given by 

which shows that the slip-line pressure coefficient, defined by 

is given by 
Gps = rPo-P(%,Ys)l/*P~ = IC+(ZS)l2, 

The distance 3 measured along the slip line S is 

But by using (48) and (50) and recognizing that 1 - c+/c0 is O(e),  it  can be shown 
that 

7. Flows with no free streamline 
7.1. Solution 

When the flow has no free streamlines, the injected flow is bounded only by slip 
lines and solid boundaries. The boundary conditions are, therefore, given by (23) 
and (31). In  this case it is no longer necessary to require the solid boundaries to be 
straight-line segments. In  order to find a representation of the flow in terms of a 
Cauchy integral we now define a sectionally analytic function O ( T )  in the T 
plane by 

(54) } 
i- T) = Q$(T)-& for T E ~ ; ,  r" O-(T) ( = Qi(T) for T E ~ ; .  

O(T) = 

Then on the transformed slip line(s) Yo the boundary condition is 

O+(T) - O-(T) = r(T) for T €Yo, 

where now r(T) = g 1 c ~ p y - 2 -  11. (55) 
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Moreover, since the real axis is now the image of the solid boundaries it follows 
from (12) and (16) that 

ImO+(T) = 0 for I m T  = 0. 

Again, let r(T) be continued into the lower half-plane according to (40) and 
define the reflexion of Yo in the real axis to be 9;. Then the solution O(T) (which 
is everywhere bounded) is simply given by (41). 

7.2. Derivation of boundary values 
The position of the slip line is obtained by substituting (54) into (A4) with.f(do) 
set equal to Q: 

(56) 
dzS 

zs(T) = x(T)-- O + ( T ) C o ( T ) ~ d T  for T€Y0. C O ( ~ )  “ s ‘  T I  dT 

Combination of ( 5 ) ,  (17), (54) and (56) shows that the pressure coefficient along 
the slip line is 

c,, = (C+(ZS)l2 = [ C O ( T ) l 2  

1 + ~ + 2 ~ R e  O + ( T ) - L  SIT O+(T)Co(T)$dT]] for T€Y0. 
(57) 

[ C O ( ~ )  Ti 

The distance along the slip line is again given by (53) with a now set to zero. 

8. Examples 
In  this section we present some examples of interpenetrating flows which were 

chosen to illustrate the following three more or less representative configurations : 
a jet penetrating a stream while attached t o  a downstream wall, a jet penetrating a 
stream with a stagnation region on its downstream side, and a jet having flowing 
streams on either side. 

8.1. A separated jet 
As a f i s t  application of the general procedure consider the separated jet shown 
in the dimensionless physical plane in figure 5 (a). The upstream and downstream 
walls are horizontal plates of infinitesimal thickness (Goldstein & Braun 1969a). 
The zeroth-order solution (no difference in total pressure between jet and stream) 
was essentially obtained by Ehrich (1953). The potential, hodograph and 
T planes are shown in figures 5 (b) ,  (c) and (a), respectively, where corresponding 
points are designated by the same numbers as in the z plane (figure 5a) .  The 
zeroth-order ‘slip line’ is shown dashed in these figures since it does not corre- 
spond to a line of discontinuity and can, therefore, be ignored as far as obtaining 
the zeroth-order solution is concerned. Simple applications of the Schwarz- 
Christoffel and linear fractional transformations (Churchill 1960, $3 34 and 92) 
show that the mappings which properly transform the zeroth-order wi and 5 
planes into the upper half T plane are 

wo =r1(T+1+1nT) - i  (58 )  

(59) and go = [T - 2A - 2iA*(T - A)t]/T. 

t wo denotes the zeroth-order complex potential related to go by f = dwo/dz. 
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FIGURE 5 .  Separated jet in (a)  physical (2) plane, ( b )  zeroth-order complex-potential (w,,) 
plane, ( c )  zeroth-order hodograph (Q) plane and (d) intermediate (2') plane. 

The mapping from the T plane on to the x plane is given by 

(60) 
where by definition z(A) = u + ib = ( A  +iB)/Ho and the dimensionless co- 
ordinates of the downstream lip are given by 

3(A+l)+(2A-l)ln ( ( I  + yi -A*)z + 6 ~ * ( i  +A)+] 

and b = 2(2A- 1) .  

It follows from figure 5 ( b )  that the zeroth-order slip line is determined by 

Imw, = 0, 

Hence, upon using (58), we find that T 

Rew, > 0. 

whenever 

T = - y e '  2v / sin?], 0 < 7 < 7 ~ .  (61) 

T = < > A .  (62) 

Moreover figure 2 shows that the zeroth-order free streamline is determined by 

By substituting (61) and (62) into (60) we can calculate, respectively, the position 
zf of 8, and the position zf of F,. 
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In  order to obtain the first-order solution it is first necessary to evaluate the 

With no loss of generality we can choose the lower limit of the integral in (45) 
= - 1. Then, since dQo/dz is infinite a t  T = A7 Q;lf(T) will be bounded at  

constants a and co appearing in (45). 

to be 
this point only if 

We can relate the constant a to the first-order thickness of the jet h, by 
equating the mass flow through the orifice to the mass flow far out in the jet. The 
(dimensionless) flow through the orifice is 

Far downstream the velocity of the jet is real and uniform, 80 that its magnitude 
may be obtained from (8) while the jet width is given by the expansion (13). 
Hence an alternative expression for the flow is 

Q = ( l + s ) ~ ( l + c h l +  ...). (64 b )  

Introducing (5) and (13) into (64) and equating the two expressions for Q shows 
that 

and - 

The first of these relations is just a result of the scaling in the zeroth-order 
problem. Upon introducing (64a),  (65) and (66) into (46) (with Tl = = - 1) and 
recalling that O(T) is real on the real axis we find that 

a = -hl. (67) 

We now return to the problem of solving (63) for a and co, or in view of (67), for 
h, and c,,. Substituting (59), (60) and (67) into (63) shows that 

O(T)dT+co  A+l+2Aln ((1+A)i-Ai)2 T - 2A + 2iAg(T - A)B 
T 

+ 4A*(l +A)&] -2 7l [3(A+ 1) + (2A- 1) In ((' + 2) - + 6AB (1 + A)*] 

[ 

+ 4 i ~ A c o  - 2ih1(2A - 1) = 0. 
But 

O ( T )  dT 
A T - 2A + 2iA*(T - A)4 

T 

O ( T )  dT 
A A*-l--i(T-A)!i 

T 
= 1" O(<)d<- PA*/ 

-1 -1 

In  view of the singularity in the denominator, the second integral must first be 
carried out over the path shown in figure 6, and then the limit a+ 0 can be taken. 
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2 a -  4 - 
l = A  0 5 =-1 

J”:~ A*-i(;-A)* 
FICXJRE 6. Path of integration for O ( T )  d T  in T plane. 

After performing this operation and taking the real and imaginary parts of the 
resulting expression we find that 

lA a(<)@- 2A4PjA A’f (A+5)*@(~)d< +co[A+ 1 +464( l  +A)*] 
-1 -1 ts 

- 3 [ A + l + 2 A t i ( l + A ) & ] +  7T c 0 2 A - ~ ( 2 A - - I )  h ] In ( ( l+A). i -A*)2 At = o  

and 2nAc0-h1(2A- 1 )  +27~A0(0)  = 0. 

Finally, upon eliminating c,, between these two equations we find that 

h -  - 27~A {2A*PJA O(<)d< 
- (A + 1) [4A + 1 + 4A4(A + 1)*] -1 < 

( (’ + 2: - A*)2 + 4A*( 1 + A)i  O(0) ( 68) 
-1 1 1  

and 
(ZA - 1) 

Go = ~ h,- O(0). 
2 r A  

With the constants a and co now determined by (67)-(69) it is possible to calcu- 
late 0: by quadrature from (381, (40), (41), (45), (59) and (61) and hence to obtain 
the slip-line position from (48) and (59)-(61) and the free-streamline position 
from (49), (59), (60) and (62). If T is on Yo +9; equation (42) with the plus sign 
(since T approaches the contour from within 9’2) must be used in place of (41) to 
calculate O(T) .  The pressure coefficient and distance along the slip line are given 
by (51) and (53). 

The shapes of the jet boundaries for various values of the parameters 6 and BIA 
are shown in figures 7-9. As the total pressure in the jet increases above the 
ambient value, the volume occupied by the jet increases. This is due to the fact 
that the uppermost streamline rises more than the lowermost. This effect is most 
evident in figure 7, which corresponds to a jet injected normal to the mainstream 
(B  = 0). When the orifice angle tan-lBIA is greater than or equal to zero, a small 
change in the total pressure within the jet results in a large change in both the 
jet penetration and jet thickness. This effect becomes more pronounced as the 
orifice angle is increased. In  fact, it becomes so pronounced that it is felt that the 
analysis may not be valid for orifice angles larger than 45’. Figure 8 shows that, 
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6r Free-stream velocity, / 

-1 0 1 2  3 4 5 6 

Dimensionless co-ordinate, X/Ho 

FIGURE 7. Separated-jet contour for an orifice offset ratio B/A = 0. 
--- , E = 0; -.-, E = 0.1; -, E = 0.2. 

6 1 r Free-stream velocity, V, - 

FIGURE 8. Separated-jet contour for an orifice offset ratio BIA = - 2. 
-__  , E = O ; -  , E = 0.3. 

for sufficiently large negative values of the orifice angle, changes in the total 
pressure within the jet have almost no effect on the jet penetration or on the 
jet thickness. Although the scale of the figures is too small to show this, the 
numerical results do show that the jet always leaves the wall in a tangential 
direction. 

The ratio of the jet width at  large distances downstream to the distance from 
lip to lip across the orifice is defined as the contraction ratio. Its variation with 
orifice angle is shown in figure 10. It is apparent that turning the jet into the 
mainstream tends markedly to decrease the contraction ratio, signifying that 
there is a decrease in the flow within the jet. The indications are, however, that 
a slight increase in the total pressure in the jet can easily compensate for this 
decreased flow. The jet penetration also increases with increasing orifice angle. 

The slip-line pressure coefficient is shown in figures 11 (a)-(d). Each figure is for 
a different orifice angle. These curves contain all the information necessary for 
calculating the viscous boundary layer along the slip line. They show that the 
velocity within the jet at  the upstream edge of the orifice decreases with both 

32 F L M  70 
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FIGURE 9. Separated-jet contour for an orifice offset ratio B / A  = - 1. 
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FIGURE 10. Jet  contraction ratio for a separated jet. 

increasing orifice angle and decreasing E. It can also be seen from these curves that 
the pressure coefficient nearly achieves its asymptotic value in a distance of 10 jet 
diameters downstream. 

8.2. An attached jet 

As a second example consider a jet attached t o  the downstream wall (Goldstein & 
Braun 1969b). The (dimensionless) x plane is shown in figure 12 (a) .  The zeroth- 
order T plane is t,he same as that shown in figure 5 ( d )  and the zeroth-order 
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Distance along slip line, $/Ho 
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FIGURE 11. Pressure coefficients on slip line of separated jet for various orifice offset ratios. 
(a )  B/A = 0. ( b )  B / A  = 2 (third quadrant). ( c )  B /A  = - 2 (fourth quadrant). (d )  B/A = - 1 
(fourth quadrant). 
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FIGURE 12. (a)  Physical ( z )  plane and ( b )  zeroth-order hodograph (co) plane 
for an attached jet. 
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T-plane parameter, A 

FIGURE 13. Dependence of orifice angle on the parameter A. 

hodograph plane is shown in figure 12 ( b ) .  The zeroth-order potential plane and 
hodograph plane are transformed to the T plane by (58) and by 

(50 = T/(T-A) ,  7 2 0. (70) 

The physical plane is mapped into the T plane by 

T A  
A T  

T + ( l - A ) l n - + - - ( l + A )  

where, by definition, 

z(A) = ( A  + iB)/HO = a + ib 
= rl[( 1 - A) In A + 2( 1 + A)] + i ( A  - 1). 

As in the previous example Yo (the zeroth-order slip line in the T plane) is 
determined by (61). The function 0 can now be calculated by substituting (40), 
(55 ) ,  (61) and (70) into (41) [or (42) if T is onYo] and carrying out the integration. 
The slip-line position and pressure coefficient can then be obtained by substitu- 
ting this expression along with (70) into (56) and (57), respectively, and carrying 
out the quadratures. The distance along the slip line is obtained in a similar way 
from (53). 

The asymptotic jet thickness can be found by equating the mass flow through 
the orifice [calculated from (64u)l to the mass flow far downsteam in the jet 
[calculated from (64b)l to obtain h, = 0+(0). Then upon using the results of this 
section to evaluate O+(O) we find that 

where Si is the sine integral. The parameter A is related to the orifice angle in the 
manner shown in figure 13. 
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FIUURE 14. Jet contraction ratio. 
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FIQURE 15. Attached-jet contours for various orifice offset ratios and values of E .  

(a) B/A = 0.  ( b )  B/A = - 3 t .  ( c )  B/A = 34. 

The jet contraction ratio h/(a2 + b2)4 is plotted in figure 14 and the shapes of 
the jet boundaries for various values of the parameters E and BIA are shown in 
figure 15. Pigure 15 (a) corresponds to a jet injected normal to the mainstream 
(B  = 0), figure 15 (b )  to  negative orifice angles (i.e. jets injected downstream) 
and figure 15(c) to positive orifice angles (i.e. jets injected upstream). The 
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FIGURE 16. Pressure coefficients on slip line of attached jet for various orifice offset ratios 
and values of 6. (a)  BIA = 0. (6) B / A  = - 31 (fourth quadrant). ( e )  B1A = 34 (first quadrant). 

configuration shown in figure 15 (c) may be strongly modified by viscous effects. 
Figures 15 (a )  and ( c )  show that small changes in the jet's total pressure result 
in quite large changes in both the jet penetration and jet thickness, when- 
ever the orifice angle is greater than zero. This effect becomes more pronounced 
as the orifice angle is increased. 

The numerical results show that the rate of change of the jet penetration 
distance with the total-pressure difference c can be approximated by an expo- 
nential function of the form aebv, where v is the orifice angle tan-l B/A.  This 
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relation holds for both the separated and attached jets. At X = 3.4H0, b is approxi- 
mately 1.5 for both types of jet. This shows that in both cases the sensitivity of 
the penetration distance to the dimensionless total pressure difference E is a very 
strong function of the orifice angle. The figures also show that turning the jet into 
the mainstream tends markedly to decrease the flow in the jet. The extreme 
sensitivity of the flow configuration to e at large positive orifice angles indicates 
that the perturbation analysis will eventually break down when the orifice angle 
gets large enough. 

The results of the pressure-coefficient calculations are shown in figure 16. 
Each figure is for a different orifice angle. These curves contain all the information 
necessary for calculating the viscous boundary layer along the slip line. They 
show that the velocity at  both the upstream edge of the orifice and at  the down- 
stream end of the slip line increases with increasing E provided that the orifice 
angle remains constant. For negative orifice angles the velocity tends t o  be 
relatively constant along the slip line, exhibiting a slight dip a t  the upstream 
edge of the orifice. As the orifice angle is increased towards zero the variation of 
the velocity along the slip line becomes more pronounced. For non-negative 
values of the orifice angle there is a definite peak in the velocity profiles which 
becomes more marked as the angle is increased. We attribute this to the fact that 
the velocity is infinite at  the downstream edge of the orifice. Since this point 
moves closer to the slip line as the orifice angle is increased, it is natural that the 
velocity along the slip line should become more peaked with increasing orifice 
angle. 

8.3, A jet injected between two streams 

There are various situations of technological interest where a stream of fluid is 
injected into the midst of a moving flow. This occurs, for example, when water 
discharges into a river, when gas is blown from an exhaust into the wind or when 
gaseous fuel is injected into a stream of oxidant. The dimensionless physical plane 
for such a configuration is shown in figure 17 (a) (Goldstein & Siege1 1972). The 
injected flow can turn and either contract or expand as it meets the mainstream, 
Since this example is similar to the preceding one we shall merely indicate the 
results. 

The intermediate T plane is chosen in the manner indicated in figure 17  ( b ) ,  
the curves 9h1) and 9;11) being the images of the zeroth-order slip lines Shl) and 
,.S'hI1) respectively. 

The mapping of the zeroth-order hodograph plane into the upper half T plane is 

h co = (z) for 9 2 0; 8 = 1 /72 ,  

where 7~h is the deflexion angle of the flap and S = A/Ho is the ratio of the nozzle 
width to the zeroth-order asymptotic jet width. The points in the physical plane 
are related to the points in the T plane by 
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X 
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C - r -  

FIGURE 17. (a )  Flow geometry and nomenclature and ( b )  intermediate (T) plane (shown for 
‘ye > ys)  for a jet between two moving streams. 

and 

The curves 9h1) and 9 & 1 1 )  (appropriately extended into the lower half-plane) are 
given parametrically by? 

} for T E Y ~ I )  
-0, < 0 < w, 
0, >, w > in, -in > w >, -w, 

T O ( w )  with -477 < w < +T for T E Y ~ I )  
for 7 6  >yS 

f The curves are traversed in a positive (clockwise) direction as w changes from the left- to 
the right-hand limit in the inequalities. 
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FIGURE 18. Jet slip-line boundaries for outlet with 60" plate deflexion angle; 
R/A = 1. (a )  L/A = 1. (a) L / A  = 2. 

and 
T(l)(w) with -&r < w < in- for T ~ 9 ' f )  

} for T ~ Y ~ I I )  
T = T ( 2 ) ( ~ )  with -0, ,< w < W, 

T(')(w) with O, >, w > in, > w 2 -w,  
for ?I3 < 73, 

1 
where T(k)(w) = (y6 - y3)2 + 4y376w cot w)4]  (i + i tan w )  and om 
is the solution of the transcendental equation (76 - y3)2 tan w, + 4y3 yewm = 0 for 
w, 2 0. The physical location of the slip lines S(I) and SII) can now be calculated 
by using these results in (40), (41), (55) and (56) in the manner indicated 

Figure 18 shows the slip lines for positive values of the angle ~ T A  and various 
values of the total-pressure difference parameter 8. As E is increased, the total 
pressure in the jet increases above that in the stream. This produces two effects 
on the slip-line configuration: fist the jet width expands; and second the jet 
deflexion tends to persist over a longer path, that is, it  is more difficult for the 
outer stream to turn the jet into the horizontal direction. 

Results for negative h are shown in figure 19. Their validity depends upon the 
flow remaining attached to the upper boundary by means of the Coanda effect - 
which can be promoted by boundary-layer control. The contraction ratio &/A is 

- y3 + ( - 

in $8.2 
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FIGURE 19. Jet slip-line boundaries for zero orifice offset distance ( B / A  = 0) 
and a plate deflexion angle of - 60". ( a )  L lA  = 1. (b)  L lA  = 2. 

larger than unity in this instance as the flap is expanding the jet by virtue of the 
attachment of the upper jet streamline. When e is increased, the width of the jet 
tends to expand and its path becomes more horizontal. 

9. Conclusions 
The theory of sectionally analytic functions provides a method for extending 

the classical analysis of inviscid interpenetrating streams to situations where 
there is a small difference in total pressure. Calculations of specific examples 
show that the sensitivity of the jet width and penetration to the pressure differ- 
ence is strongly dependent upon the angle at  which the orifice or nozzle is 
positioned. 

The authors are indebted to Miss Jean Healy for carrying out the numerical 
computations. Some of the results in this paper were given in a preliminary form 
in several N.A.S.A. reports (Goldstein & Braun 1969a,b; Goldstein & Siege1 
1972). 
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Appendix 
Let d denote any streamline whose zeroth-order position is do. Then we can put 

the points zd on d into one-to-one correspondence with the points zg of do in such 
a way that zd - z i  = O(E) using the relation 

Re {C+(Z? dzd} = [ I +  &4Jl Re (Q(2:) dz;), (A 1) 

where f(do) is an arbitrary, monotonically increasing, real function of the arc 
length do. 

The condition that the velocity and arc element are parallel, both on the 
streamline d and the zeroth-order streamline do, is 

Im{c+(zd)dzd} = Im{Co(zg)dz:} = 0. 

C+(zd) dzd = [I +f(do)] co(zg) ax:. 

(A 2) 

(A 3) 

The sum of (A 1) and (A2) yields 

On the left side of (A 3) we introduce an expansion of the type (17) or (18) as well 
as the expansion dz* = dz{ + Edzi to show that 

Integration froin a point z = at which zf = 0 yields 
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